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A new approach to problems of shock dynamics 
Part I Two-dimensional problems 

By G. B. WHITHAM 
Institute qf Mathematical Sciences, New York Universitj. 

(Received 6 December 1956) 

SUMMARY 
In  this paper, two-dimensional problems of the diffraction and 

stability of shock waves are investigated using an approximate 
theory in which disturbances to the flow are treated as a wave 
propagation on the shocks. These waves carry changes in the 
slope and the Mach number of the shock. The  equations 
governing the wave propagation are analogous in every way to 
the non-linear equations for plane waves in gas dynamics, and their 
solutions can be deduced by the same mathematical techniques. 
Since the propagation speed of the waves is found to be an 
increasing function of Mach number, waves carrying an increase 
in Mach number will eventually break and form what we may 
call a ‘shock’, corresponding to the breaking of a compression 
wave into a shock in the ordinary plane wave case. Such a 
‘ shock ’ moving on the shock is called a shock-shock. The shock- 
shock is a discontinuity in Mach number and shock slope, and it 
must be fitted in to satisfy the appropriate relations between these 
discontinuities and its speed. The  waves moving on the shock 
are interpreted as the trace of cylindrical sound waves in the flow 
behind the shock. I n  particular a shock-shock is the trace of a 
genuine shock in the flow behind, and thus corresponds to Mach 
reflection. 

The  general theory of the wave propagation is set out in $2. 
The subsequent sections contain applications of the theory to 
specific problems, including the motion of a shock along a curved 
wall, diffraction by a wedge, stability of plane shocks and the 
instability of a converging cylindrical shock. 

1. INTRODUCTION 
In this paper a relatively simple approximate method is developed for 

treating problems of the diffraction and stability of shock waves. The 
theory can be formulated without reference to any specific problem and 
it is convenient to give the basic ideas before discussing the applications. 
Only two-dimensional problems are considered in this first part ; the 
extension to other cases is given in Part 11. 
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We start by considering the set of curves formed by the successive 
positions of a curved shock as it moves forward through a uniform medium, 
and we introduce the orthogonal trajectaries of this set of curves. These 
orthogonal trajectories will be called ' rays '. In figure 1 the positions of a 
shock moving from left to right are shown as full lines and the rays are shown 
as broken lines. This network of shock positions and rays may be used as 
a basis for orthogonal coordinates in the plane, and accordingly coordinates 
(a ,  /3) are introduced such that the shock positions are the curves a = constant, 
and the rays are f l  = constant. A suitable u coordinate would be the time t 
at which the shock occupies that position, but we modify this slightly and 

Figure 1. Sketch showing the successive positions of a curved shock ; the full and 
broken lines represent the shock positions and the rays, respectively. 

take 0: = a,t where a, is the sound speed in the uniform gas ahead of the 
shock. Then, the distance along a ray between the shock positions given 
by a and tc + du is M(a,  /3) da where M is the Mach number of the shock 
at (a ,  p). If we let A(M, P)dp be the corresponding distance between the 
rays /3 and p + d/3, then it can be shown that, for purely geometrical reasons, 
M and A must satisfy the differential relation 

An elementary proof of this will be given in 5 2 but from a more sophisticated 
point of view it is the condition for the space to be flat; the curvature 
tensor can be expressed in terms of M and A, and (1) is the only component 
which is not identically zero. This alternative derivation is given in some 
detail in Part I1 since it is the neatest way of obtaining the relations 
corresponding to (1) for three dimensions. 

Now, if we can find a second relation between M and A, we have an 
explicit equation for the Mach number of the shock as a function of (a ,  B) ; 
from this function, the shock position can be determined for all times. 
The second relation must come from the dynamics of the motion and 
strictly requires a solution of the equations of motion for the flow behind 
the shock, subject to the Rankine-Hugoniot relations across the shock and 
boundary conditions at solid walls, etc. Of course this is the original 
problem. But the above approach suggests a simple approximate procedure. 
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To  some extent, the propagation of the shock between any two neighbouring 
rays can be treated as if the rays were solid walls. This would be exactly 
trueif the rays were particle paths, but the most we can say is that immediately 
behind the shock the particles move normal to the shock, i.e. in the ray 
direction. However, we assume that the later divergence of the rays and 
the particle paths is not important and accept this similarity to propagation 
in a channel. Now, for a shock moving down a channel, if the modifications 
to the shock arise only from changes in channel area, the Mach number is 
a function of the area. Taking this over to propagation in the channel 
formed by neighbouring rays, we have the functional dependence 

A = A ( M )  (2) 
as the second relation between A and M .  This is the only assumption in the 
theory and we can proceed from (1) and (2) without further approximation. 
Qualitatively, the results are independent of the precise choice of (2) provided 
only that A is a decreasing function of M .  For numerical results we make 
use of the function A ( M )  obtained and used recently by R. F. Chisnell 
(1957) for the motion of shocks down converging channels. In  an earlier 
paper, Chester (1954) found that for a small change dA in channel area the 
corresponding change in Mach number is given by 

d A  - 2 M d M  _ -  
A - ( M ’ - l ) K ( M ) ’  (3) 

where K ( M )  is a slowly varying function, decreasing from 0.5 at M = 1 
t o  0.3941 (for y = 1.4) as M + 00. Chisnell suggested that the integrated 
form of (3) should give a good approximation for a channel of slowly varying 
cross-section ; his work on the converging cylindrical shock confirms this 
view. On integration, (3) gives 

where k is an arbitrary constant which may be different for each channel, 
i.e. k = k(P) .  In many cases the shock is initially of constant strength 
with M and A taking constant values M ,  and A,. Then, for each channel 
k has the same value A,If(M,) and it can be absorbed intof(M). Even if M, 
is not constant on tc = 0, the k can be suppressed by a careful choice of the 
coordinate P ;  it is only necessary to arrange that A, =f(M,).  For the 
time being we assume this is done. Later, however, we shall see that the 
dependence of k on P can arise in a less trivial way. 

The function K ( M )  is given by 

( y - 1 ) M a + 2  
1 +M-Z)]-l, 

p2  = 2yMa- (y - 1) ’ 
3,nd its graph is shown in figure 2. Chisnell has shown that the integral 
in (4) can be evaluated explicitly ; a graph of loglo,f(M) is given in figure 3. 
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M 

With A = A ( M ) ,  (1) becomes a second-order hyperbolic equation for M 
with two independent variables. In the exact formulation of the problem 
there are three independent variables ; much of the mathematical simplifi- 
cation is in the reduction of the number of independent variables. The 
solution represents waves moving in each direction on the shock face- 

o L t  I 2  3 4  6 7 8 9  I I I LO I N -  

Figure 3. Graph of the function loglof(M) given by equation (4). 

Since equation (1) expresses a kinematic relation, these waves are a further 
example of ‘ kinematic waves ’ in the sense used by Lighthill & Whitham 
(1955). In fact, this example extends the idea of kinematic waves since 
the examples studied previously involved only first-order differential 
equations and, consequently, the wave propagation was in one direction 
only. It turns out that there is a close analogy between the waves travelling 
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on the shock and sound waves of finite amplitude in one-dimensional gas 
dynamics, and all the mathematical methods used in that field are available 
for the present case". The propagation speed for a wave, i.e. rate of change 
of f l  with respect to a, is an increasing function of M so that waves carrying 
a decrease in the value of M spread out like expansion waves in gas dynamics ; 
similarly, the profile of a wave carrying an increase in M steepens like a 
compression wave. In  the latter case, the wave will eventually break and 
then to complete the solution a discontinuity in Mach number and in shock 
slope must be fitted in. This discontinuity is analogous to the shock wave 
of gas dynamics and it must be included in such a way that the appropriate 
'shock relations' connecting its speed with the jumps in M ,  etc., are 
satisfied. 

Since all the features of gas dynamics arise in the study of the wave 
motion on the shock, it is desirable to use the same terminology because 
it automatically conjures up the right ideas. However, the discontinuous 
wave would then be called a ' shock' and unless the word is qualified in 
some way there may be confusion with its direct use for the true shock. 
To avoid this, we shall always refer to these ' shocks ' moving on the true 
shock as shock-shocks. 

The waves on the shock are interpreted as the trace of cylindrical waves 
which are spreading out in the flow behind the shock. Thus, an ' expansion 
wave ' on the shock is the trace of a cylindrical expansion wave in the flow ; 
a ' compression wave ' is interpreted similarly. Therefore, a shock-shock 
must be the trace of a genuine shock produced in the flow behind the main 
shock. Thus, it arises in Mach reflection and represents the three shock 
intersection characteristic of that phenomenon. This feature of the theory 
is particularly valuable since Mach reflection is of great importance in 
diffraction theory and is difficult to treat theoretically in all but the simplest 
cases. All the mathematical details of the wave motion, including a 
discussion of the appropriate conditions relating quantities on the two sides 
of a shock-shock, are given in $2. 

It is useful to think of the theory as the generalization to shock waves 
of the theory of geometrical acoustics. Geometrical acoustics applies to 
weak sound pulses and is closely related to the special case of weak shocks 
in the present theory. But there are differences, connected with the 
linearization in geometrical acoustics, which can be important. First, in 
geometrical acoustics (1) is replaced by the following determination of A, 
which is independent of M. If the shock is very weak, its velocity at differcnt 
points varies only slightly and is always close to the sound speed a,. In 
accordance with the linear theory of acoustics, these small variations are 
neglected and the propagation speed takes the constant value a,,. Hence, 
the rays are straight lines, determined once and for all as the normals to a 
given initial shock position, and the area A of any ray tube can be calculated. 

* It is assumed in this paper that the reader is familiar with the theory of one- 
dimensional gas dynamics as presented for example, in Courant & Freidrichs (1948). 
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The variation of the strength of the shock is then deduced from the 
assumption that the energy flux down any ray tube remains constant along 
the tube. Since the energy flux is proportional to the square of the amplitude 
of the wave multiplied by A, it follows from this argument that the strength 
is proportional to A-lI2. For a weak shock, the strength is proportional 
to M -  1, so that 

M -  1 a AW2. 
We may note that this agrees with the Chisnell formula as M +  1, since 
K = 0.5 in (4). Even for weak shocks, however, geometrical acoustics is 
inadequate in certain cases and the general formulation must be used. 
This is due to the linearization which is introduced by assuming that the 
propagation speed can be approximated by a,; although the variations 
of the speed are small they cannot always be neglected. Consider, for 
example, a shock which is initially concave forward as in figure 4. The 

Figure 4. Shock positions and rays according to geometrical acoustics ; AB, CD, 
EFG, HIJK represent successive positions of the shock. 

normals to the initial surface form an envelope, called a ' caustic ', at which 
d + 0, and consequently geometrical acoustics predicts infinite strength. 
Moreover, beyond the caustic the position of the shock as calculated by 
geometrical acoustics folds over itself. To  obtain the true behaviour it is 
absolutely essential for the small variations in speed and the corresponding 
distortion of the rays to be included. Then nothing very remarkable 
happens. As the strength increases in the concave part, the shock moves 
faster there and tends to smooth out the shape ; the rays are pushed away 
from each other and now avoid any intersection. In fact the region of 
the shock which was originally concave overshoots and becomes convex. 
Then the velocity decreases until the shock ultimately smooths out into a 
plane. The true picture takes the form sketched in figure 1 ; the appropriate 
mathematical discussion using equations (1) and (2) is given in $4. T 
above argument is also a rough explanation of the observed result that 
plane shocks are very stable ; the theory of this paper puts the argument 
in mathematical form. For further discussion of the differences between 
weak shocks and sound pulses, reference may be made to the author's 
paper on weak shock waves (Whitham 1956). 
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Turning now to the question of applications, it is clear from the outset 
that the theory can only be expected to apply to certain types of problem. 
The simplicity of the method is achieved by avoiding a detailed discussion 
of the flow behind the shock through the assumption that A is a function 
of M .  Clearly, the flow cannot be forced into such a subsidiary role in 
general. It would not be feasible, for example, in explosion problems in 
which the propagation towards the shock of disturbances originating far 
behind it must be the prime consideration. But, for the diffraction of a 
uniform plane shock by an obstacle, the disturbance originates at the shock 
so that it is more understandable (although still surprising, perhaps) that 
the discussion can be limited to a neighbourhood of the shock. The accuracy 
of the results is a measure of how far this is possible. Again, according to 
the rough argument given in the previous paragraph, stability is largely a 
question of local adjustment of the flow near the shock and can be included 
in the applications. 

Mathematically, the easiest problem to solve is the diffraction of a shock 
moving along a non-uniform wall. If the wall always turns away from the 
flow region, an ‘ expansion wave ’ originating at the wall moves out along 
the shock and the solution is a ‘ simple wave in the terminology of gas 
dynamics. If the wall turns towards the fluid a ‘compression wave’ is 
sent along the shock and eventually a shock-shock is formed. The appropriate 
relations connecting quantities on the two sides of the shock-shock must 
be introduced in this case. A special case is diffraction by a wedge in which 
the solution is given entirely by a shock-shock separating two uniform 
regions; this is the familiar Mach reflection. It must be pointed out 
immediately that the present theory does not throw any further light on 
the difficulties in the conventional solution for conditions at a three shock 
intersection. Its main contribution is to give a method for treating variations 
in the three shock configuration which would be caused, for exampie, by 
further curvature of the wall of the wedge. The special case of a small 
corner (both expansive and compressive) offers an opportunity of checking 
the results with those of the linear theories of Lighthill (1949) and Ting & 
Ludloff (1952). The comparison shows that the approximate method is 
most suitable for strong shocks with Mach number greater than about 2, 
and must be used with care for weaker ones. The predicted changes in 
hlach number are in good agreement with Lighthill’s values for all strengths, 
but for very weak shocks the geometry of the disturbed flow is not given 
accurately. The details of the application to diffraction problems are set 
out in $ 3. 

In $4, the stability of plane shocks is considered and the results are 
compared with those found by Blackburn (1953) and Freeman (1955) 
working with Lighthill’s linear theory. It is seen that the stability predicted 
by the theory of this paper is achieved by a different process. The essential 
mechanism here is the non-linearity of the waves and the dissipation of their 
energy in shock-shocks (in the same way that shock waves dissipate energy 
in ordinary sound waves). In the linearized theory of Blackburn and 
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Freeman, the stability depends on damping of the waves through some 
diffusion process (although, of course, this does not appear explicitly in 
their work). The non-linear theory predicts that a sinusoidal disturbance 
on a nearly plane shock will decay with time like t-l, whereas Blackburn and 
Freeman predict decay as t1i2 for strong shocks and t-3/2 otherwise. It is 
not clear at this stage which of the two effects is more important or how the 
two sets of results are related. 

Finally, in 5 5, we continue Butler’s theory (Butler 1955) of the instability 
of a converging cylindrical shock. This work is closely similar to Butler’s 
investigation and the results are the same. The advantage of the derivation 
given here is that we linearize the non-linear equation for M by the hodograph 
transformation and no approximation is made. Although Butler does not 
obtain or use (l), his method is essentially equivalent to assuming small 
perturbations about the symmetric solution in equation (1) and retaining 
only the linear terms in the perturbations. The method given in $ 5  is free 
from questions of the validity of the linear approximations and confirms 
Butler’s results. It also offers an opportunity to show how the hodograph 
transformation may be used in this work. 

The relations corresponding to (1) in three-dimensional problems are 
obtained in Part 11. In particular, they are specialized to axisymmetrical 
problems. Then, as might be expected, the waves on the shock are analogous 
to cylindrical waves in gas dynamics. For example, diffraction of a plane 
shock by a cone is analogous to the problem in gas dynamics of a cylindrical 
piston expanding with uniform velocity ; the same method of solution can 
be used. 

2. GENERAL THEORY OF THE WAVE MOTION ON THE SHOCK 

To establish the geometrical relationship between M and A, consider 
the curvilinear quadrilateral PQRS with vertices (a, /3), ( a  + So(, p), 
(a+Sa, /3+8/3), (a ,  /3+S/3) respectively (see figure 5). Let e(a, p) be 
the angle made by the ray with a fixed direction. Since the sides PS 
and QR are ASP and ( A  + (aA/aa)Sa)Sg, respectively, and the distance 
between them is MSx, the change in ray inclination from P to S is 

QR-PS 1 aA 
= - - sg. 

M aa PQ 
68 = 

Hence ae 1 a~ 
@=ax- (5 ) 

Since the inclination of the /3-curves is &r + 0, a similar argument shows 
that 

(6) 
1 aiw ae 

aa A ag-  
_ _ _ -  _ -  

If 0 is eliminated from (5) and (6), equation (1) quoted in the Introduction 
is obtained. It is convenient, however, to work with the two first-order 
equations ( 5 )  and (6) instead of the second-order equation (1). 
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We now assume in ( 5 )  and (6) that A = A ( M )  where A r ( M )  < 0. Then 

As noted in the last section, these equations are like the equations of non-linear 
sound waves and can be treated in the same way. Once the functions 
M(a, /?) and @(a, 8) have been found, the coordinates (a, 8) may be related 
to the Cartesian coordinates (x ,y)  through the relations y = J'MsinOda, 

Figure 5.  Neighbouring 01 and f l  curves in a region of continuous change in M and 8. 

x = $ M cos 8 da obtained by integrating along a ray. The wave property 
is obtained by writing (7) and (8) in characteristic form, in which only 
derivatives in one direction appear. The characteristic form is 

where c is the function of M given by 
- M  - d( M2)  

= .JZF = J d(A2) ' 
it is easily verified that these equations are completely equivalent to the 
original ones. They show that 

43 = constant on - = c, 
dM 

da 
i.e. on a wave moving in the direction of increasing p with speed c, and 

dP = constant on - = -c,  
dM 

da 

i.e. on a wave moving in the direction of decreasing p with speed c. The 
expressions 6' f J' dM/Ac in (11) and (12) correspond to the Riemann 
invariants of gas dynamics. 

F.M. L 
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In  the special case 
increasing, 

e- 

G. B. Whitham 

of a simple wave moving in the direction of @ 

J = constant everywhere ; (13) 

hence, from (1 l), 8 and M must be individually constant on each characteristic 
curve d/l/da = c(M), and this curve is a straight line in the (a, j3) plane. 
The solution can then be determined completely in terms of appropriate 
boundary values. For example, let us suppose that 8 is a given function 
8,(a) on /3 = 0 and that initially the shock is undisturbed with 8 = 0, 
M = M,. (This example arises in the next section for the motion of a 
shock along a wall.) Using the initial conditions, (13) determines the 
relation between 8 and M y  and in particular shows that the value M ,  of 
M on j3 = 0 is given immediately in terms of 8, by 

kfw dM I,. ~c 8, =: 

In  the (a, j3) plane, the slope of a characteristic starting on j3 = 0 at a = a, 
is c(M,(aw)). Hence, since the characteristics are straight lines on which 
8 and M are constant, we have 

8.= 8,(a,), M = M,(Q,) (15) 

on B = (a-  a,) c(M,). (16) 

Since M ,  is a known function of a,, equation (16) determines a, as a function 
of a and j3; then (15) gives 8 and M at (a, j3). 

In  the general case, however, waves propagate in both directions ; then 
(11) and (12) are the basic equations for the well known numerical method 
of characteristics. 

T o  complete the theory we must consider the propagation of shock- 
shocks, i.e. .discontinuities of M and 8. First, a simple theory is given 
which is suitable when the changes in M and 8 are not too large; then, 
we shall see how this should be modified in other cases. Consider the 
neighbourhood of the discontinuity in two successive positions of the 
shock as shown in figure 6 (the rays through the corners are shown as 
broken lines). Let the difference in the a coordinates for the two shock 
positions be ha and the difference in the /3 coordinates of the rays be Ag, 
and let subscripts 0 and 1 be used for values ahead of and behind the 
discontinuity, respectively. Then, in figure 6, PQ = MI Aa, QR = A, AP, 
SR = M, Aa, PS = A, Aj3. Expressing the distance PR in two alternative 
ways, we have 

But, the ratio Ap/Aa is the shock-shock velocity C in the (a, j3) coordinates ; 
hence, 

(A, AS)* + (M, = (MI Aa)2 + (A, Aj3)2. 

(17) 
Mf-M:  
A; - A:j * 

c2= - 
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If it is assumed that the functional relation (4) between A and M applies 
even for the sharp change in channel section at a shock-shock, the velocity C 
is determined by (17) in terms of M, and Ml. T o  deduce the corresponding 
change in 0, we note that angle QPS = 0, - 0, and this angle can be found 
from the geometry in figure 6. For, 

cot(0, - 0,) = tan(RPQ + RPS) 

Substituting from (17), we have 

It is easily verified for very weak shock-shocks that the velocity given 
by (17) reduces to the velocity (10) as M, +- M,, A ,  + A,, and that, for 
small changes in M and 0, (18) gives the same relation as (13). 

Figure 6. Neighbouring a and curves at a shock-shock. 

Although (17) and (18), together with (4), determine weak or even 
moderate shock-shocks with reasonable accuracy, we must consider further 
the question of stronger ones. We only go into this briefly to give the 
main ideas because considerably more labour would be involved in practical 
applications; this is not worthwhile until it is seen whether the original 
approximations prove satisfactory in practice. Nevertheless, the extensions 
do show up some valuable theoretical points. The limitation on the above 
relations for the shock-shocks is that for sufficiently large jumps in M, the 

L 2  
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dependence of A, on M, will not be given accurately by (4), which assumes 
that the channel section varies only slowly. Moreover, it is not just a 
question of establishing the correct formulae relating M and A at an abrupt 
change in channel section, I n  fact these formulae have been found by 
Laporte (1954). We must remember that there is a third shock in the flow 
behind the main shock, which must be considered in an accurate treatment 
of the conditions across a shock-shock. It does not invalidate the relations 
(17) and (18), but in general we cannot use the simple channel formula for 
the dependence of A, on M,. Of course, it depends on the magnitude of 
the discontinuities ; if M, - Mo is not too large, the third shock will be 
weak and the channel formula can give a reasonable approximation. 

Suppose we accept the 
approximate shock-shock relations so that Ml- M, and the velocity C 
are determined in terms of the angle change 8,-8, and the initial Mach 
number M,. Then we can go on to fit in the third shock. But its strength 
must be chosen so that both the pressure and the stream deflection behind 
it are the same as behind the Mach shock. One of these conditions is 
sufficient to determine this third shock and we have a further condition 
still to satisfy. This corresponds to the fact that we have really assumed 
one condition too many in the original shock-shock conditions, namely, 
that the relation between A, and MI is known. If we relax this condition, 
the full three-shock theory will determine the relation in the course of 
fitting in the third shock. Thus, for more accurate conditions we may take 
the relations between M,, A,, 8, and M,, A,, 8, which are given by the 
conventional theory of the three-shock intersection ; in particular, these 
will determine Al. 

With this more general determination of the shock-shock, let us go on 
to consider further the question of subsequent disturbances moving along 
the shock. In  each ray channel, the variations in A and M are still related 
by (4), but in tracing back to determine the factor K at some known point, 
we can only go back as far as the shock-shock, even if the conditions ahead 
of it are uniform. Thus K = A,/j(M,), where A, and MI are the values 
determined from the three-shock relations. Therefore k is a function of $ 
which is to be determined in the course of the solution. Hence, in 
equations ( 5 )  and (6) the general form 

The limitation can be seen in another way. 

A = W ) f ( M )  
must be used. Fortunately, if the new variable Jk( /3 )dp  is taken instead 
of /3, the equations are the same as (7) with A(M) replaced byf(M), and 
they can be solved in a similar way ; we omit the details. The whole thing 
is rather like the question of entropy changes in gas dynamics. First of 
all one assumes that the pressure p and density p are functionally related 
( p  oc p Y  usually) and this leads to simple waves and so on. But, then, 
since compression waves break, shocks have to be considered and they 
involve entropy changes so that p is no longer a function of p alone ; behind 
the shock, the entropy is constant on each particle path. We have the 
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analogous situation with A and M similar to p and p, and k playing a role 
similar to the entropy. Our simple theory of shock-shocks is rather like 
neglecting entropy changes at shocks in ordinary gas dynamics. This is 
known to give quite accurate results if the shock is not too strong, and we 
expect the same to be true here. 

In the applications described in the following sections it will be necessary 
to make use of the properties of the functions c(M) and I(Ac)-ldM. The 
functions are derived from equation (3), i.e. 

dM, 
2M _ -  _ -  d A  

A ( M a -  1) K ( M )  
and graphs of K ( M )  and A ( M )  have already been given in figures 2 and 3. 
From (lo), we have 

c (M)  = ( - M/AA’)lI2 = {&(Ma- 1) K(M)}l12/A. (19) 
Now c(M) is the propagation speed, i.e. the rate of change of /3 with respect 
to cc of a wave in the (M, p) variables ; hence the quantity Ac is the rate of 

Figure 7. Graph of the propagation speed against M. The full line refers to the 
present theory (equation (19)) ; the broken line refers to the acoustic value 
given by (24). 

change of distance with respect to M since Ad/3 is the line element in the 
direction of /3 increasing. Thus Ac is a more useful as well as more 
convenient quantity to compute; the graph of Ac is shown in figure 7. 
The Riemann variable is given by 

i, dM Ac = I r ( ( M Z - l ) K ( M )  2 )Ire dM, 

and its graph is shown in figure 8. 
The approximations of the various functions in the special cases of 

weak and strong shocks are easily obtained using the results that K +  0.5 
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as M +  1, and K +  0.3941 (for y = 1.4) as M + a. 
formulae are 

The appropriate 

1 K ( M )  N 0.5, AC N ( M -  1)'/'/2'/', 
' ( M -  1)s'2 

K N  A (-'y M-1 ' c-211~(Mo-l)~Ao' as M - t l ,  (20) 

and 

K ( M )  - 0.3941, 1 

" - - 0  I 

J where n = 2/K( co) = 50743, 

6 

3 

2 

I 

M 

1 
Figure 8. Graph of the function dM/Ac. 

3. DIFFRACTION OF PLANE SHOCKS 

We consider a shock moving along a wall of given shape, specified by 
giving the inclination 8, as a function of the distance s along it. We suppose 
that the wall is straight up to a certain point and that the shock is initially 
moving with constant Mach number M,. The foot of the shock must 
always be normal to the wall ; hence, the wall is a ray. If the wall is taken 
as j3 = 0, then 8 is given on j3 = 0. Provided that no shock-shocks occur, 
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the solution to this problem is the simple wave discussed in the previous 
section. Actually 8, is given here as a function of s whereas we require 
its values in terms of u. These can be found, however. For, on p = 0 

u = l & ,  

and M ,  is determined from 8, by the simple wave relation (see equation (14)) 

Expunsion round a convex corner 
For the special case of a convex corner, Ow jumps from zero to a negative 

value and the solution is a centred simple wave. In  the ( c c , ~ )  plane, the 
characteristics (16) for the disturbed region form a fan, since they all start 
at the same point on ,8 = 0. The equation of each characteristic is 

= ac(M),  and since u, no longer appears this relation determines M 
immediately as a function of p/a. The shape of the shock will be as shown 
in figure 9 ; the radial lines shown here correspond to the characteristics 
and on each of them M is constant. The first disturbance spreads out 
on the shock at a rate given by d,8/du = c(M,). If we choose f i  as the value 
of the distance y from the wall in the initial undisturbed motion so that 
A, = 1, then the actual speed of the first disturbance is a,c(M,) (since 
a = u,t). 

Figure 9. Diffraction of a shock around a convex comer. 

Now for a small bend in the wall, i.e. for 8, small, we can compare 
the results with the linear theory given Lighthill (1949). T o  be precise 
we compare the values predicted for the Mach number at the wall, M,, 
and for the speed of propagation of the disturbance. For small Ow, 
(14) reduces to 

M ,  - M, = Ac(M,,)O, = Bw {S(%- l)K(Mo)}l’a, (22) 
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(see (19)). We compare this with Lighthill's value in two extreme cases, 
M, + 1 and M, -+ 00. For weak shocks, (22) gives 

whereas Lighthill has 8 / (3~)  times this. For strong shocks, (22) gives 

M~ - M, 0*4439M0 e, ; 
Lighthill's value has to be taken from a graph and all we can say is that the 
numerical factor is rather less than 0.5. In view of the relative simplicity 
of the derivation of (22) the results are remarkably good. 

Turning now to a comparison of the speeds of propagation, it follows 
from the theory of sound that the first possible disturbance travels out in 
the flow behind the shock with the local sound speed a relative to the flow 
velocity u. Therefore the disturbance travels along the shock with speed 

where U is the undisturbed shock velocity. The quantities U, a, u can 
all be expressed in terms of M,  and it is found that (23) is a,c*, where 

This is to be compared with the speed c, = c(M,) given by (19). Since 
A, = 1, co is the same as the graph of Ac in figure 7 ;  the graph of c* is also 
shown in figure 7. For weak shocks, 

for strong shocks 

C, N o*4439M0, C* = 0.4083M0. (26) 
Thus, the values are in reasonable agreement for shocks with M, > 2, say ; 
but, for very weak shocks c, = &*. 'This discrepancy arises because the 
present theory cannot avoid concentrating the change in M over a relatively 
small part of the shock. For the stronger shocks, Lighthill's work shows 
that this concentration is correct ; in fact he finds that the curvature becomes 
infinite as M ,  + co. But for weak shocks the disturbance should be spread 
out over the whole of that part of the shock which is inside the sonic circle. 
The present theory compromises by concentrating the disturbance halfway 
to the sonic circle. Generally speaking then, the theory is more suitable 
for moderately strong shocks. However, the correct prediction of the 
value of Mo - M ,  even in the weak case should not be ignored. 

When the magnitude of 8, is not small, M ,  must be found from the 
exact form of (14) using the graph shown in figure 8. The solution is the 
centred simple wave determined from c (M)  = PIX,  c(M,) < 81. < c(M,). 
As an example, the details of the solution are given for an infinitely strong 
shock. First of all, from (14) and (21), the Mach number at the wall is 
given by 

M ,  = Mo exp(O,/dn). (27) 
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Then the region c(M,) < j3/a < c(Mo) covered by the simple wave can be 
written 

exp((n+ 1)3,/dn} < j3./n/aMo < 1. 
In  the simple wave (using the results in (21)) 

c(M) = - Mn+l = j3 - and 8 = -&log MO - . 
dnM; a M 

Therefore, 

Along the shock, ax/Aaj3 = - sin 8, ay/Aap = cos 8 ; therefore, at time 
t = a/uo, the shock is given in terms of the parameter j3 by 

x = aM,  cos 8, - 

y = aMw sin 8, + 

(Mo/M)n sin 8 d/3, 

(M0/M)" cos 8 dj3. 
1: 1 (29) 

J: 
It should be noted that x/Moa and y / M o a  are functions of the single 
quantity j3/Mo a, so that the shock pattern expands uniformly with time and 
a change in Mo involves only a change of scale. The values of x and y in 
the simple wave are most easily calculated from (29) with 8 as the parameter 
instead of j3 ; they are 

where tanX = Iln. The shape of the shock is plotted in figure 10 for the 
special case 8, = - 4 ~ .  

For, M ,  
cannot decrease below unity; hence, if 8, decreases below the value 
Olim given by 

For weaker shocks there is a limit on the magnitude of BW. 

the solution breaks down. 
the flow at the corner which is known to occur in certain cases. 

Presumably this corresponds to separation of 

Compression at a concave corner: dzyraction by a wedge 
For a concave corner, the solution given by this theory is a shock-shock 

separating two regions in which M and 8 are constant (see figure 1 1 )  ; this 
is Mach reflection. Following the remarks in $2, the most accurate 
determination of the solution in this theory is the conventional three-shock 
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Figure 11. Diffraction of a shock by a wedge. 
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tan x = MwP/A,a, and /3/a is equal to the shock-shock velocity C. 
Therefore, from (17), 

Also, from (18) ,  

MO 1 + A ,  MWPO Mo cote, = - 
M ,  { ( l - M ~ / M ~ ) ( l - A ~ / A ~ ) ) 1 ' 2  (32) 

For strong shocks, the curve of x against Ow becomes independent of Mo, 
since Aw/Ao is a function of M,/Mo (equation (26)). This curve is drawn 
in figure 12 and compared with the corresponding curve obtained from 
the three-shock theory (assuming that the Mach shock is approximately 
straight). We expect our shock-shock relations to apply when 8, is small 

Figure 12. Values of x and 6, for the diffraction of a strong shock by a wedge. 
The full line refers to the present theory ; the broken line refers to the three- 
shock theory. 

but to diverge ultimately from the more accurate value. It is seen that the 
error for small 6, is about as expected, being of the same order as the 
discrepancy in (24). Then, fortuitously, the curves come closer together 
and actually cross. However, in the three-shock theory there is an upper 
limit on 8, at which Mach reflection goes over into regular reflection, while 
the simple shock-shock relations become useless as they continue to predict 
Mach reflection. It is perhaps worth noting that if AW is related to M ,  
by Laporte's formulae for a finite change in channel section, a cut-off value 
for 8, is obtained (the value being Ow.= 33.6"). But as explained in $2, 
this is not the correct direction in which to look for more accurate shock-shock 
conditions. 
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As an example of a shock of moderate strength the graph of x against 0, 
was found for Mo = 2.42, corresponding to a pressure ratio 2013. This 
is shown in figure 13 and compared there with the experimental values 
quoted in Bleakney & Taub (1949). 

Figure 13. Comparison of the graph of x against Ow with the experimental results of 
Bleakney and Taub (indicated by broken line) in the case Mo = 2.42. 

Wall of arbitrary shape 
For the general problem, the solution must be obtained as in the 

analogous problems of gas dynamics; the slope of the wall corresponds 
to the velocity of the 'piston' in gas dynamics. If shock-shocks are not 
formed the solution is the simple wave described by (15) and (16) of 0 2. 
Weak shock-shocks can be fitted in by a technique developed for gas 
dynamics and supersonic flow. They are formed when the characteristics 
overlap leading to a multivalued solution in (15), (16),  because for points 
(a,/3) in the overlapping region there will be more than one value of a,. 
This is avoided by fitting in a shock-shock, according to the relations (17), 
(19). The rule (Whitham 1952) for fitting in a weak shock-shock is obtained 
in terms of the values of aw on pairs of characteristics which meet at the 
shock-shock. Let the two values of aw for such a pair of characteristics 
be a1 and a2. Then, the values of a1 and a2 are calculated for each /3 from 
the two relations 

where F(a)  is the function 
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For the derivation of this type of result and for detailed explanations of the 
method of using it see Whitham (1952) (especially the Appendix). It is 
consistent with the approximations made already to approximate F(a)  by 
the expressions 

At each line j3 = constant in the (a, j3) plane, all the characteristics with 
their starting points a, in the range a1 < a, < a2 are omitted since they 
have already been cut off by the shock-shock. In  this way all except one 
of the values a, given by (16) will be excluded, and the solution becomes 
single-valued. At the shock-shock, F jumps from the value F(oc,) to the 
value F(a,) ; the corresponding jump in M is then given by (35). Certain 
applications of these results will be made in the next section. 

Motion of a shock between two walls 
The motion of a shock between two walls may also be treated by this 

theory. It would be analogous to the problem in gas dynamics of the waves 
produced in a tube of finite length by pistons in each end of the tube. The 
given shape of the walls corresponds to given motions of the pistons. In  
this case waves would move in each direction across the shock face, being 
reflected from each wall in turn. The solution would require numerical 
computations (by the method of characteristics, say). 

4. STABILITY OF PLANE SHOCKS 

It is well known that plane shocks are stable; that is, if the shock is 
disturbed slightly from the plane shape the disturbance decays as the shock 
propagates. This property is now investigated using the theory of wave 
propagation on the shock, and the rate at which a disturbance will die out 
is determined. 

As a special case we may consider the disturbances generated as the 
shock moves along a wall, and the results of the last section may be used 
to study the decay of the disturbance. Let us take first the case of a small 
bump on the wall. Then 8, = 0 except on a finite length of the wall. 
I n  this case it can be shown that after a sufficient time the disturbance will 
become an ' N-wave ', i.e. there is a shock-shock at both the head and tail 
of the disturbance. The maximum values of 8 and M - M ,  are taken at 
the shock-shock, so it is sufficient to calculate the rate at which these values 
decay. Since the wave is moving into an undisturbed part of the shock, 
F(al) = 0 in (33) and (34), and therefore 

On eliminating (a2 - al), we have the relation 

p = -  F(a)da 
0 
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to determine the characteristic variable a, behind the shock in terms of 8. 
For large /? it is clear that the corresponding az tends to the zero of F. If 
this zero is denoted by a, we have 

F(a,) - { 1; F(a) d a y  . 
The changes in M and 8 at the shock-shock are proportional to F(a,): 
from (35), 

M - M ,  = [8 3 F(a,), 
df = df, 

and, from (13) with A, = 1, we have 
0 = ( M -  Mo)/co. 

Thus, the disturbance decays like /?-* as it moves away from the wall, 
and since the disturbance is weak, /? is approximately equal to the distance 
from the wall. 

Blackburn (1953) investigated the case of a shock moving along a 
sinusoidal wall using Lighthill's linear theory. According to the present 
theory the sinusoidal variation sends out a series of successive compression 
and expansion waves, and the compression waves eventually break to form 
a series of shock-shocks. As /? -+ co, the values of al and a, given in (33) 
approach successive zeros of F(a), say a, and a, + 1, and we see from (33) 
that the jump in F(a) across each shock is given by 

I n  place of 1, we may introduce the wavelength A of the sinusoidal wall 
which is approximately lM, ; also /? = y. Then the changes in M and 8 
are given in terms of AF as before, and we have 

AF - I / / ? .  

It is interesting to note that these values are independent of the amplitude 
of the sinusoidal variations in the wall slope. The factors multiplying h/y 
in (37) are increasing functions of M ,  so that the stability decreases with 
increasing Mach number. 

Now the decay like h/y predicted here does not agree with Blackburn's 
results. He finds that the decay is proportional to ( A / Y ) ~ ' ~  in general, but 
as M -+ co the law changes over to decay proportional to (A/y)l/,. But the 
mechanisms of decay in the two theories are completely different. In the 
present theory, non-linearity is essential ; the decay is brought about by 
the shock-shocks. Indeed if the theory were linearized in the usual way, 
the waves would not decay at all. On the other hand, Blackburn's theory 
is a linear one and he finds a decay due to a damping of the waves 
which does not appear here. If we pursue the analogy to gas dynamics, the 
present theory corresponds to the non-linear theory of sound waves, 
neglecting viscosity and heat conduction except where their effects are 
concentrated in shocks ; the Blackburn theory corresponds to the linear 
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theory of acoustics with viscosity and heat conduction included. However, 
it would be dangerous to push this analogy too far, and it should not be used 
in assessing the relative importance of the two mechanisms of stability. 

Another formulation of the stability problem which leads to similar 
results is the initial value problem in which the shape and Mach number 
of the shock are given at some time, i.e. 8 and M are prescribed functions 
of j3 on a = 0. The problem of a non-plane piston moving forward with 
uniform velocity into a gas at rest is a special case of this. In  this case 
waves move in each direction on the shock. If the shock is initially plane 
and uniform except in a section of finite length, there will be an interaction 
region at first, but eventually the disturbance will separate into two simple 
waves one moving in each direction. Each of these simple waves is similar 
to the solution obtained for the problem of a bump on the wall, and decays 
like t1/2. A n  accurate solution in the interaction region could be obtained 
numerically using the method of characteristics. But if the disturbance 
is notstoo large and the interaction region not too wide, the linearized form 
of the solution will give quite good results and it can be given explicitly. 
Let us, for example, consider the case in which M takes the constant value 
M,, on a = 0 and 0 is a given function of ,!?. I n  the linearized theory, (7) 
and (8) are approximated by 

ae 1 aM 

ae i aM 
au A~ ap 

q 3 + c $ T 0 a a =  0, 

= 0. - + -- 

Then, 9 and M both satisfy the wave equation and we have the solution 

where g, and g, are arbitrary functions. (This solution corresponds to 
approximating the characteristics in the exact theory by lines j3 f coa.) 
Since M is a constant on a = 0, (39) shows that aO/aa = 0. Therefore 
the functions g, and g, are to be determined from initial conditions 8 = do(,!?), 
say, and ae/aa = 0 on a = 0. These determine the solution as 

The curvature of the shock is proportional to ae/a,!? and so satisfies a similar 
rule. This shows very directly the tendency of the curvature of the shock 
to be averaged out. For example, the curvature never exceeds the maximum 
value of the initial curvature. Thus even the linear theory rectifies the failure 
of geometrical acoustics near a caustic, and the curvature remains bounded. 
The linear theory is not uniformly valid as a becomes large due to the 
divergence of the characteristics, and we must go over to the accurate 
determination. 

Freeman (1955) considers the special case of a shock which is initially 
sinusoidal in shape, and as would be expected his results for the decay of 
the disturbance are similar to Blackburn’s. In our theory we have a rather 
complicated situation with shock-shocks moving in each direction and 

8 = gdB - co 4 +g2(B + co a), 

= H e o ( j 3  - co a)  + OO(j3 + co a)). (40) 
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interacting with each other. But the results will be essentially the same as 
(37) with the disturbance decaying like l / t .  

As a preliminary investigation Freeman considers the shock produced 
by a nearly plane wedge-shaped piston moving forward with uniform 
velocity. It is perhaps worth noting our solution for this case. The initial 
Mach number Mo of the shock is constant, and is easily found in terms of 
the piston velocity from the shock conditions. The initial values of 0 are 
Bo]=,-S in ,!3 < 0, 0, = +6 in /3 > 0, where T -  26 is the angle of the wedge. 

Figure 14. Shock patterns produced by wedge pistons. 

If the wedge is convex forward, the solution is given by two centred simple 
waves. Through the simple wave moving in the direction of /3 increasing 

dM 
e-6 = I, Ac' 

and through the other wave 

I n  between the simple waves, both these relations hold; hence, 0 = 0 
and the Mach number Ml is determined by 

If the wedge is concave forward, 6 is negative and the solution is given by 
two shock-shocks. The physical plane and the (a, /3) plane are shown for 
each case in figure 14. 
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Although these solutions have been introduced for a rather artificial 
problem, they also furnish results for the more interesting problem of 
reflection of a plane shock from a nearly plane wall. It is only necessary 
to choose the frame of reference so that the air behind the incident shock 
is at rest. Then the reflected shock is given by the above solution; the 
flow pattern for both a convex and a concave corner are shown in figure 15. 

Figure 15.  Reflection of shocks at wedge-shaped walls. 

The appropriate values of 6, M,, a, are obtained from the Mach number M‘ 
of the incident shock, the wedge angle ~ - 2 6 ’ ,  and the sound speed a’ 
ahead of the incident shock, using the well-known results for regular 
reflection. When the incident shock moves with Mach number M into 
air at rest, the particle velocity u’ behind it is given by 

u) 2 
a’ y+l 

The velocity - u’ is superimposed on the flow in order to obtain the required 
frame of reference. In this frame, the reflected shock moves into air at 
rest and it can be described by the above theory. The sound speed a, is 
given by 

- 4 = (2yM’am-(y- l)){(y- 1)M’2+2) 
a‘ a (y + 1)aMa 9 

and the Mach number M, and the inclination 6 of the ‘undisturbed part’ 

F.M. M 
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of the reflected shock are given by 

a = {W y + l  +(y+l)M'Z 3 - y  }a', 

5. STABILITY OF A CONVERGING CYLINDRICAL SHOCK 

In  contrast to plane shocks, it is found that converging cylindrical and 
spherical shocks are unstable. As noted in 0 1, a theoretical demonstration 
of this instability has been given by Butler (1955). We now give a somewhat 
improved presentation of Butler's theory which avoids making the small 
perturbation approximation. 

A converging cylindrical shock will ultimately become strong, so that 
for the stability investigation it is sufficient to consider the case of strong 
shocks. We suppose that the Mach number is constant and equal to Mo 
at some initial time, and we choose /3 to be the distance of the ray along the 
initial position of the shock so that A, = 1. Then we take 

as given in (26), and the equations (7) and (8) for 8 and M become 
A = (M,/M)", n = 5.0743, 

For a shock with cylindrical symmetry and initial radius R,, 8 = -g/Ro 
and M is a function of a. From (42), we see that 

a being chosen so that it reaches the value zero when the shock gets to the 
centre. This is Chisnell's approximate form of the exact Guderley solution 
(Guderley 1942). For y = 1.4, (n + 1)-l = 0.16463 ; the corresponding 
exponent in Guderley's solution (calculated with great accuracy by Butler 
(1954)) is 0.16478. In  his discussion of stability, Butler chooses the value 
of n from Guderley's solution. 

Now the question is whether small deviations in the initial shape of the 
shock increase or decrease as the shock contracts. The hodograph trans- 
formation will be used to investigate this question. First it is convenient 
to introduce new variables : 

Then (42) and (43) take the neater form 
q = (M/Mo)"fl, x = (n + l)e/y;2, s = M, a/&. 

The symmetrical solution is the one in which q o(: l/s, x cc /3. (It may be 
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noted in passing that another exact solution is 

this describes the motion of a shock down a certain curved channel.) In 
the hodograph transformation, the roles of the dependent and independent 
variables are interchanged ; the transformation formulae for the derivatives 
are 

where the Jacobian J = a(q, x)/a(s,  #?). On substituting these expressions 
in (45) and (M), we have the linear equations 

It is convenient to eliminate #? to get the single equation 

Solutions to this equation are 

where 
If m = 0, p = - 1 gives the symmetrical solution. If m 2 1, p is complex 
with W ( p )  = - 8. Therefore, when q -+ co (as the shock contracts to the 
centre), the harmonics eventudly dominate the symmetrical mode. Hence 
the shock is unstable. 

The appearance of an imaginary part in p is also of some interest since 
it shows that the disturbance again takes the form of waves travelling round 
the shock. When the disturbance grows large, it is possible for the Jacobian 
J to vanish. This means that the mapping from the hodograph plane (4, x) 
to the (s, #?) plane ceases to be single-valued, and so-called limit lines appear. 
These correspond to the formation of shock-shocks. When this stage is 
reached, further calculations of the motion would be more easily carried 
out directly in the (s,#?) plane by numerical methods. 

9 = #?Is, x = log(#?/s) ; 

x p  = Jsq, X I  = -J&, qfi = -Jsx, 9s = J P X  

j3x+q2sq = 0, pq+sx = 0. 

g2sqq + 2qs* = sxx. 

s = @mX 

p = - & T (4 - m2)lI2. 
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